A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos. E é sobre eles que passamos a dissertar.

Conjunto dos Números Naturais

Como decorrência da necessidade de contar objetos surgiram os números naturais que é simbolizado pela letra N e é formado pelos números 0, 1, 2, 3, …, ou seja:

N = {0; 1; 2; 3; …}

Um subconjunto de N muito usado é o conjunto dos números naturais menos o zero, ou seja N – {0} = conjuntos dos números naturais positivos, que é representado por N*.

Observações:

  • Em N são definidas apenas as operações de adição e multiplicação;
  • Isto é fato pois se a e b são dois números naturais então a + b e a.b são também números naturais. Esta propriedade é conhecida como fechamento da operação;
  • Valem as propriedades associativa, comutativa e elemento neutro (0 para a adição e 1 para a multiplicação) para as duas operações e a distributiva para a multiplicação em N. Veja o artigo Produtos Notáveis para maiores detalhes sobre essas propriedades, no caso da multiplicação, onde o conjunto universo considerado é o dos números reais, que abordaremos mais abaixo, e que são válidas para N;
  • Em N a subtração não é considerada uma operação, pois se a diferente de zero pertence a N o simétrico -a não existe em N.

Como consequência, surge um novo conjunto para atender essa necessidade.

Conjunto dos Números Inteiros

Chama-se o conjunto dos números inteiros, representado pela letra Z, o seguinte conjunto:

Z = {…, -3; -2; -1; 0; 1; 2; 3; …}

No conjunto Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los:

  1. Conjunto dos inteiros não negativos: Z+ = {0; 1; 2; 3; …};
  2. Conjunto dos inteiros não positivos: Z = {…; -3; -2; -1; 0};
  3. Conjunto dos inteiros não nulos: Z* = {…, -3; -2; -1; 1; 2; 3; …};
  4. Conjunto dos inteiros positivos Z+* = {1; 2; 3; …};
  5. Conjunto dos inteiros negativos Z* = {…; -3; -2; -1}.

Note que Z+ = N e, por essa razão, N é um subconjunto de Z.

Observações:

  • No conjunto Z, além das operações e suas propriedades mencionadas para N, vale a propriedade simétrico ou oposto para a adição. Isto é: para todo a em Z, existe -a em Z, de tal forma que a + (-a) = 0;
  • Devido a este fato podemos definir a operação de subtração em Z: a – b = a + (-b) para todo a e b pertencente a Z;
  • Note que a noção de inverso não existe em Z. Em outras palavras, dado q pertencente a Z, diferente de 1 e de -1, 1/q não existe em Z;
  • Por esta razão não podemos definir divisão no conjunto dos números inteiros;
  • Outro conceito importante que podemos extrair do conjunto Z é o de divisor. Isto é, o inteiro a é divisor do inteiro b – simbolizado por b | a – se existe um inteiro c tal que b = ca;
  • Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento;
  • Cada ponto da reta orientada é denominado de abcissa;
  • Em Z podemos introduzir o conceito de módulo ou valor absoluto: |x| = x se x >= 0 e |x| = -x se x < 0, para todo x pertencente a Z. Como decorrência da definição temos que |x| >= 0 para qualquer número inteiro.

Conjunto dos Números Racionais

O conjunto dos números racionais, simbolizado pela letra Q, é o conjunto dos números que podem ser escritos na forma de uma fração p/q, com p e q inteiros quaisquer e q diferente de zero: